報告題目:On minimal k-factor-critical planar graphs
報告時間:2024年4月12日(星期五)上午8:30-9:30
報告地點:理學院B315
主辦單位:理學院
報告人:盧福良
報告人簡介:
盧福良,福建省閩江學者特聘教授,曾入選福建省百千萬人才工程。主要研究方向是圖的匹配理論及相關問題。在J.Combin.Theory Ser.B,SIAM J.Discrete Math.,Journal of Graph Theory,Electron.J.Comb.,Discrete Math.等雜志發表論文30余篇。
報告內容簡介:
A graph G of order n is said to be k-factor-critical (0< k < n) if the removal of any k vertices results in a graph with a perfect matching. A k-factor-critical graph G is minimal if G-e is not k-factor-critical for any edge e in G. In 1998, Favaron and Shi posed the conjecture that every minimal k-factor-critical graph is of minimum degree k+1. We confirm the conjecture for planar graphs.(Joint work with Qiuli Li and Heping Zhang)